If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+17w=0
a = 1; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·1·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*1}=\frac{-34}{2} =-17 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*1}=\frac{0}{2} =0 $
| -24x=-25 | | H=32.2+7r | | 62x-6=363x-5 | | q^2+15q+14=0 | | 3x—9=6x+14 | | 3x-9=6x+14 | | 6g-4-9g-2=-27 | | 16+(18+10)=(x+18)+10x= | | 7(x-4)=3(x+2)+4x | | -4(b+3)=8(b-6) | | 5+7a=19a= | | k2+10k–11=0 | | 5+7a=19 | | 9p-14=5p+2 | | x/9+7=-8 | | 5x-(-4)=-3x+20 | | 9q-5=22 | | -7w-13+4w=26 | | 3(x−5)=12.x= | | 7a−3=2a+12a= | | 149-8=22+20p | | a/5=3=9 | | 5(x-2)-2x=-8 | | 12p-14=22 | | 5(f-3)=95 | | 4(x−2)+2(x+1)= | | 129=24+5t | | 6y+3y-2y+5=61 | | 3(5z+3)+1=40 | | 8=3m=38 | | 30y+20y=1000 | | 22=-8+5v |